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Memory integral Constitutive Equations in 
Periodic Flows and Rheometry 
D. A. SlGlNER 
Department of Mechanical Engineering, Auburn University, AL 36849 USA 

The use of the integral fluid of order three to predict some simple nearly viscometric unsteady flows 
of viscoelastic liquids, driven by periodic forcing, is discussed. Flow enhancement effects, due to the 
parallel and orthogonal superposition of oscillatory and simple shear fields. are predicted. I t  is shown 
that it is feasible to determine the constitutive constants involved from a series of experiments of 
rheomet ry . 

KEY WORDS Periodic pow, rheomerry. consrirurive equations 

INTRODUCTION 

Multiple integral constitutive equations are not in favor with both the theoretician 
and experimentalist due to the rather large number of constitutive parameters 
involved at any order larger than two. The analytical difficulties, in particular in 
complex flows, and the seemingly impossible task of determining the constitutive 
parameters are discouraging. Of course the determination of a large number of 
parameters from any given single experiment of rheometry is out of question. The 
idea that I would like to develop is that a series of experiments of rheometry may 
breath hope into this old query. 

Multiple integral constitutive structures, in viscoelastic fluids and solids alike, 
may be needed whenever the effect on the stress of a strain increment may not be 
considered to be independent of the preceding and/or following strain increments. 
If that is the case multiple integral models may not be reduced to a single integral 
constitutive equation which is always a possibility in the opposite case. There is 
strong evidence in the literature, both analytical and experimental in nature, which 
indicates that multiple integral terms may be needed to describe the response of 
the material. For instance the motion driven by an oscillating vertical rod in a large 
vat cannot be adequately described without the inclusion of a double nested integral 
in the constitutive structure. 

We also would like to make the point that constitutive equations should not be 
too specialized. We subscribe to the point of view that it is much better to search 
for an equation as universal as possible for a limited class of fluids than to look 
for equations which are universal only for a restricted class of motions of a possibly 
larger class of fluids. For instance exact universal equations for the prediction of 
viscometric flows are known such as the CEF and K-BKZ models. But the predictive 
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46 D. A. SIGINER 

powers of these exact stress-strain relationships fail as soon as one considers nearly 
viscometric flows with possibly large shear rate variations such as pulsating pressure 
gradient driven flow in a pipe and flow in a cylindrical container with or without 
a free surface driven by the rotating end caps. It is by no means certain that 
universality in the sense of Navier-Stokes equations will ever be attainable. Evi- 
dence is aplenty that it may even be an impossible task. Nevertheless I believe 
some degree of universality is attainable and is a worthwhile goal to strive for. 

We propose to look at constitutive structures of the following type 

where the even order kernel tensors Ki will ultimately define the material functions 
and therefore characterize the fluid. Mathematically manageable forms of the stress 
response functional F can be obtained if F is linearized around some deformation 
history Go. Functional differentiability of say either FrCchet or Gateaux type may 
be assumed and the response functional may be expanded into a series defined 
by (2). 

where 6F and a2F represent functional derivatives at Go and the history of the 
motion G(X, s) of the particle X has been expressed as a sum of the base state Go 
and the deviation Goo from the base state. 

Functional representations of the type given in (1) would mathematically make 
sense only in a suitable function space and when the response functional is con- 
tinuous with respect to a continuity measure appropriate to that space. The to- 
pological structure of the assumed space determines the behavior of the fluid if 
the internal structure of the fluid may be represented by equations of type (1). If 
different topologies are assumed the behavior of the liquid according to each and 
every one of them will be different. Both the domain and the range of the response 
functional F is defined once a particular topology is assumed to give structure to 
the space. The domain of F, the class of admissible deformation histories, is re- 
stricted by the particular topology assumed. The range of F, the collection of all 
possible stresses under the assumed topology is determined by the domain of F. 

Although it may be convincingly argued that the behavior of physical fluids is 
not dependent on the choice of a function space and the topology imposed on it, 
that choice has important practical consequences because the constitutive equation 
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CONSTITUTIVE EOUATIONS I N  UNSTEADY FLOW 41 

adopted would only make sense in a space with structure defined by a particular 
topology. The dynamics of any motion can only be predicted in the context of the 
space in which the constitutive equation is defined. If the fluid obeys the constitutive 
law prescribed, hopefully the predicted dynamics will be confirmed by experimental 
findings. 

The continuity of the response functional in the assumed topology defines in 
what way stresses at the present time are dependent on the strains the material 
has been subjected to in the past. Generally it is established that materials re- 
member the effect of the imposed deformations in the recent past better than the 
effect of those in the distant past. This principle is called fading memory. How 
strongly the stress at the present time is determined by recent deformation history 
and how weakly it depends on deformations removed from the recent past is defined 
by the measure of continuity appropriate to the space in which the constitutive 
relationship is valid. Theories of fading memory have been formulated by Coleman 
and Noll,' Wang,2 Coleman and Mize13 and Saut and J ~ s e p h . ~  Coleman and Noll 
use a Hilbert space with a rapidly decaying weighted fading memory norm. The 
domain of the response functional in their formulation admits a large class of 
deformation histories some of which may not be smooth. In Wang and Saut and 
Joseph's work spaces with different topologies are introduced to further restrict 
the domain of the response functional. Restricting the domain results in enlarging 
the range. For instance Coleman and Noll's fading memory theory allows shocks 
whereas Saut and Joseph's does not. 

Equation (2) may be given more explicitness if the deformation history deviation 
G,(X, s) in (3) is expanded in a series in terms of a small parameter E relevant to 
the problem at hand 

(4) G(X, s) = E"G,(X, s), n = 1,. . . , X 

then (2) may be rewritten: 

z 1 

F [ G(X, s)] = FIGo] + F, , [Go(~Gl )  + F , , , [ G ~ ~ E ~ G ~ ,  €GIr €GI] 
s = o  2! 

For isotropic fluids the kernels K i  in (1) are isotropic tensors of even order and 
the integrands are isotropic tensor polynomials. The requirement of isotropy trans- 
forms (1) into the following expression, up to and including terms with triple nested 
integrals, called integral fluid of order three 
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48 D. A. SIGINER 

2 4 

S1 = fox {(s)G(s)ds; S2 = S,; S3 = 2 S3i 
1 1 

Now we identify the structure of the integral fluid of order three given by (6) 
with the three term FrCchet expansion of the stress response functional F around 
the base state Go given by (5) and rewrite (6) as 

I 3 

F3 [ G(X, s)] = c E n s ( " )  
1 r=O 

(7) 

where S ( " )  is the nth order partial derivative with respect to E evaluated at Go, i.e. 
when E = 0, multiplied with n!. 

The identification process described above which leads to (7) assumes that the 
functional derivatives of the stress response functional at Go have integral repre- 
sentations. We caution that although a theoretical basis exists for the representation 
of the first functional derivative at Go as a single integral with the integrand linear 
in the strain history deviation G,, i.e. Riesz theorem, there are no rigorous rep- 
resentation theorems to justify the representation of the second and third functional 
derivatives at Go as double and triple nested integrals bilinear and trilinear re- 
spectively in G, which is at best a constitutive hypothesis. 

Canonical forms of the functional derivatives at Go when Go is the rigid body 
rotation and the rest state have been given by J o ~ e p h ~ . ~  when the small parameter 
E is a small amplitude perturbation such as the change in the angular velocity of a 
container or the difference of the angular velocities in the differential rotation of 
the side wall and one of the end caps of a cylindrical container. Small amplitude 
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CONSTITUTIVE EQUATIONS IN UNSTEADY FLOW 49 

perturbations of steady viscometric flows were investigated by Pipkin and Owen’ 
who derived canonical forms for the first FrCchet derivative and consistency re- 
lationships between elements of 6F and the viscometric functions. They determine 
that thirteen elements of 6F are non-zero as a result of material symmetry, isotropy 
and incompressibility. Z a h o r ~ k i ~ . ~  investigated flows with proportional stretch his- 
tories. Nearly viscometric flows are a subclass of this larger class of motions. He 
derives canonical forms for the first functional derivative with the same number 
of constitutive functions as Pipkin and Owen. 

In this paper we study a class of nearly viscometric flows which includes pulsating 
pressure gradient and vibrating boundary driven tube flows. We keep the amplitude 
of the pressure gradient pulsation or the boundary vibration small and apply an 
extension of an algorithm developed by Joseph6 to perturb the rest state of a 
viscoelastic fluid. Specifically we use the third functional derivative in (5) and (7) 
to compute the deviations from the linear viscoelastic behavior, which is described 
by the first functional derivative in (5) or (7). when the rest state of the liquid is 
perturbed by a small pressure gradient and oscillations of small amplitude around 
that gradient. Although both are small they are not necessarily of the same order 
of magnitude and the solution should adequately describe the deviations from the 
linear viscoelastic field when small amplitude oscillations are superposed on a 
relatively large gradient or vice versa. 

The point I would like to make is two-fold. Firstly 1 would like to show the 
feasibility of an analytic solution describing the nonlinear effects in any motion 
perturbing the base state G,, using the integral fluid of order three, keeping the 
strains small with unrestricted rates of strain, that is the amplitudes are kept small 
and the frequency range is unlimited. The solution we develop, qualitatively pre- 
dicts observed experimental features such as frequency dependence of the en- 
hancement defined as the ratio of the additional flow rate due to pulsations to the 
flow rate without them. The predictions are qualitative because no experiments 
have been conducted as yet to determine some of the constitutive functions in- 
volved. Secondly we would like to show the feasibility of using the pulsating and/ 
or vibrating flow in a tube as a practical rheometer. This thought is prompted by 
the fact that almost all the single integral and differential type constitutive structures 
in vogue fail to predict some feature of the experimental results concerning flow 
enhancement, in particular frequency dependence of it. For instance Oldroyd, 
Goddard-Miller, Johnson-Segalman and Wagner models predict the opposite trend 
with varying frequency in the pulsating gradient case. The oscillating and pulsating 
flows in a straight round tube should serve as a good test to pass for any constitutive 
relationship, in other words if the constitutive parameters are determined from 
other experiments of rheometry and if the equation is supposed to cover at the 
minimum nearly viscometric flows, if not a larger class, then it should be able to 
describe pulsating and oscillating flows. More importantly it can be shown, as we 
will in the discussion section, that a logical sequence of experiments of rheometry 
can be devised, with the pulsating and/or vibrating flow experiment an important 
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50 D. A. SIGINER 

component, to determine the constitutive parameters of the integral fluid of order 
three. 

MATHEMATICAL EXPOSITION 

We look into the structure of superposed oscillatory and steady shear fields, both 
longitudinally and orthogonally. Oscillatory shear fields, driven either from the 
boundary or from the pulsations in the pressure gradient, are superposed on the 
longitudinal simple shear, the Poiseuille flow. We use an integral constitutive equa- 
tion of type (1) which reduces to (6) for isotropic liquids with a FrCchet expansion 
of the stress response functional pivoted around the rest state and described by ( 5 )  
and ultimately by (7), in a Hilbert space with rapidly decaying fading memory 
norm. The Frtchet derivatives S(“) in (7) are given below in terms of the first Rivlin- 
Ericksen kinematic tensor Al.  We note that due to incompressibility and small 
strain assumptions the expansion (4) of the strain deviation Goo from Go gives 

trG, = E’WG~ + O(E~) 

and as a consequence some terms in (6) and consequently in (7) become of higher 
order in E and the constitutive functions p32 and p33 do not enter the expression 
for the integral fluid of order three, 

s32 - O(E4), s33 - 0 ( E 5 ) .  

But caution must be exercised because if the strains are large, i.e. amplitudes are 
large, p 3 2  and p33 may be part of the structure of the integral fluid of order three. 

S(2) = 1: G(s)[AI2’(s) + L,(s)]ds + jxIx y(s,, s2)A~’)(sl)A~1)(~2)dslds2, (9) 
0 0  
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CONSTITUTIVE EQUATIONS IN UNSTEADY FLOW 51 

where 

A ~ ' ( S )  = A,[U'")(x, t - s)] 

The new material moduli G ,  y, a, u1, u4 in the FrCchet derivatives (8, 9) and (10) 
are defined by, 

a *a a 3u1 
p22 = as,asz ' p31 = - 

a 3 ~ 4  

p34 = - . 

The following definitions have been used in (lo), 

(* = I,' U'"(x, T ' ) d ? ) ,  t > 7 ,  

( * *  = I,' uc2)(x, T ' )d7 ' ,  

L, = (5" - dS 

A',".V(* + (A?.V(*)r; j = 1, 2, 

L3 = ( * . V L ,  + L , * V ( *  + (L,.V(*)T, 

L, = L,.vA',') + A ~ V L ,  + (A' , ' ) .VL, )~ .  

We also expand the flow variables such as velocity and pressure into power series 

U(x, t ;  E) = E"U(")(X, t ) ,  

q x ,  t; E) = E " W ( X ,  t ) .  

The mathematical statement of the problem is as follows: 

@ + V - F ,  V * U  = 0, (12) p - =  - v  

= - E ( P  + Aka sin om(), ( P ,  Aka) > 0, E < 1,  (13) 

D U  
Dt 

U(R, t )  = E(e,X,, sin o,,f + eeArne sin ornet), k = 1, . . . , K; 
n = l ,  . . . ,  N; m = l ,  . . . ,  M. (14) 
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52 D. A. SIGINER 

The complete solution with detailed discussion of the problem stated in (12, 13, 
14) has been given by Siginer"'.l2 for channel flow. As long as there are no rotational 
waves on the tube boundary the solution detailed in12 can be translated into the 
cylindrical geometry following the same lines of analysis. But if the boundary 
oscillates rotationally in a tube, there are additional terms which contribute to the 
longitudinal mean flow. Specifically, the shear relaxation modulus G(s)  has addi- 
tional influence in shaping the velocity field deviation from the linearly viscoelastic 
field if there is a rotational wave on the boundary. This is a direct result of the 
effect of the flow domain geometry and does not happen for channel flow between 
parallel plates. In the following we will not dwell upon the details of the analysis 
and refer the interested reader to"'-'4 and to forthcoming publications. 

For a single longitudinal sinusoidal wave either on the boundary or in the pressure 
gradient the steady flow rate can now be computed explicitly and reads, 

E Q ( ~ )  is the Newtonian Poiseuille flow rate which is the same as the linear visco- 
elastic flow rate, Siginer.In.l2 The deviation due to nonlinear viscoelastic behavior 

Expressions (16) and (17) are universal in that they are independent of the particular 
representations of the constitutive functions C, y, a, u,, u4. If rapidly decaying 
Maxwell type of representations are adopted we obtain given in (18). k , ,  pl, m , ,  
n, are the inverses of the relaxation times at the lowest order of the Maxwell 
representations of the constitutive functions y, a, uI and u4, respectively. a2, p4, 
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CONSTITUTIVE EQUATIONS IN UNSTEADY FLOW 53 

p6 and p5 are the temperature dependent constitutive constants in the same expres- 
sions, in that order. The general forms of 'Po and Y in terms of the not explicitly 
specified constitutive functions are, 

+ = 2w-'[sin WS, + sin as2 + ws, cos o(sl - s2) + sin o(sI - s,)], 

+* = -2[cos w(sl - s3) + cos o(sl - s2) + cos w(s2 - s,)], 

1;'s in (19) are modified Bessel functions of ith order with complex arguments. 
Overbar means complex conjugate. If there is a longitudinal wave on the boundary 
the parameter + in (17) assumes the value (1) and if the fluctuation is in the pressure 
gradient it takes on ( p ~ ) - ~ .  If both are present the change in the flow rate is the 
sum of two terms, each given by (17) with the appropriate values of +, A, 4 and 
o. Qi3) given by (16) is due to shear thinning in steady shear and is independent 
of the fluctuations in the driving conditions. On the other hand, QI" in (17) is 
entirely due to the oscillations. We show elsewhere, Sigine~, '" '~ . '~  that the param- 
eter qo in Qh3) is given by, 

It is well known that if the liquid is shear thinning p2 + p3 < 0, yielding Yo > 
0 and therefore Qh3) > 0, an increase in the steady flow rate due to shear thinning. 
We also show that in the limit of very small frequencies but finite amplitudes the 
frequency dependent part of the enhancement QI" tends to an expression given 
by go times a constant factor indicating that the liquid has to be shear thinning for 
an increase in the flow rate to occur due to the fluctuations. We also determine 
that the boundary driven enhancement is primarily an inertial phenomenon in 
agreement with previous investigations with different constitutive models, Sigi- 
ner.12.14 

RHEOMETRICAL IMPLICATIONS 

Enhancement depends on 13 parameters at the lowest order of the Maxwell rep- 
resentations for the constitutive functions, p, q:, 8, k ,  a,, a2, &, p5, P6, k , ,  p,, 
m,, n,. The determination of these parameters, from a rational sequence of ex- 
periments of rheometry and corresponding analytical expressions, will be discussed 
in this section. 

The first two Rivlin-Ericksen constants (al, a2) are of pivotal importance to the 
shear and quadratic shear relaxation moduli given by G and y. At ,present there 
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54 D. A. SIGINER 

is no reliable and accurate experimental method to determine the Rivlin-Ericksen 
constants. Widely used cone and plate rheometry would yield (a l ,  a,) through 
torque and normal thrust measurements. But mechanical rheometers are not quite 
accurate at very low rates of shear and the Rivlin-Ericksen constants are defined 
in the limit of zero shear as p is, 

where K, N , ,  and N, are the shear rate and the first and second normal stress 
differences. Rod climbing experiments have shown that in the second order range 
in the angular velocity of the rotating rod the climbing is controlled by the parameter 
(3a1 + 201,). The free surface of the liquid is very sensitive to internal pressure 
variations, and at low rates of shear, measurements of the free surface profile and 
matching with the analytical expression describing the surface would yield (3a, + 
2 4 ,  but not the individual values of a, and a2. Yo0 er d.I6 have shown that 
combinations of the Rivlin-Ericksen constants appear at higher orders in  any per- 
turbation analysis of the Weissenberg effect between rotating concentric cylinders 
of which the rotating rod is a special case. For instance (aI + a,) appears at the 
4th order and governs the shape of the free surface at this order together with 
another parameter made up of combinations of viscometric constants. Measure- 
ments of the surface profiles in the 4th order range in angular velocity and matching 
with the analytical expression may yield values for these two constants. But in 
general there is no way to accurately determine individual values for the Rivlin- 
Ericksen constants from rod climbing experiments. Recently, the free surface swell- 
ing due to the Weissenberg effect in a cylindrical cup with steadily rotating bottom 
has been investigated, Siginer.” It turns out that the surface shape is governed by 
two parameters, both combinations of ( a l ,  a2) in the second order range in the 
angular velocity of the bottom cap, 

p = a, +a,, p* = 2a, + a2. 

The velocity field in the meriodional plane is determined only by p. but both p 
and p* appear in the pressure field and shape the surface profile. They are mul- 
tiplied with different factors and cannot be combined as they are in the rod climbing 
phenomenon. The effect of p in shaping the surface is very strong, and that of p*.  
weak that it is, fades further as one moves towards the side wall. For aspect ratios 
smaller than one the surface deformation is more pronounced than those for aspect 
ratios larger than one. Working with two aspect ratios, say 1 and 0.5, and for the 
same angular velocity of the bottom cover in the second order range we could get 
two equations with two unknowns in each case for (a1, a2) through (20). The results 
should be verified with other aspect ratios and checked against values of (301, + 
201,) provided bv rod climbing experiments. Other ways of determining (a,, a:) i n  
an accurate and repeatab!c fashion can no doubt be devised but free surface rhco- 
metry appears tci be a very good candidate for this purpose. 

The viscosity index k in the shear relaxation modulus G has to be determined 
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CONSTITUTIVE EQUATIONS IN UNSTEADY FLOW 55 

from an oscillatory testing experiment of linear viscoelasticity . The first relaxation 
time in the quadratic shear relaxation modulus, y, has been determined for a 
particular fluid from oscillatory rod climbing experiments, Beavers.'* With k ,  de- 
termined from oscillatory rod climbing experiments in the 2nd order range in the 
amplitude of the oscillating rod, p2 can be computed, Siginer."' Yo0 et af.16 have 
shown how it is possible to determine the shear thinning parameter (p2 + p3) from 
circumferential velocity measurements on the free surface in the Weissenberg phe- 
nomena between differentially rotating vertical cylinders or as a limiting case in 
the rod climbing in a large vat with a steadily rotating rod. (p2 + p3) can also be 
determined from flow rate measurements in Poiseuille flow, 

Q = EQ(' )  + E ~ Q ~ ~ )  + O(E~).  

EQ") is the Newtonian flow rate and E ~ Q ~ )  is the increase in the flow rate due to 
shear thinning in steady shear. (p2 + p3) is embedded in the expression (16) for 
Qi3). Measurements of actual flow rates and matching with (16) would give (p2 + 
p3). But as p2 has been determined, p3 can now be found, Siginer.lo.l2.l4 There 
are six more parameters left to determine, (p4, ps, p6, p,, M,, n,). Suppose a series 
of experiments is conducted to measure the excess flow rate E ~ Q  i3) at several 
frequencies for one sinusoidal wave in the pressure gradient or on the boundary. 
The six parameters embedded in given by (18) need to be adjusted to make the 
theoretical expression (17) for Qi') match the experimental curve. But the ad- 
justment is subject to constraints 

The distance of the experimental points (Qi3) (w), w) to the analytical expression 
(17) may be minimized, in a way similar to least squares, to obtain a nonlinear set 
of five equations with five unknowns p5, p6, pl, m,, n,. 
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